Thomas Henson

  • Data Engineering Courses
    • Installing and Configuring Splunk
    • Implementing Neural Networks with TFLearn
    • Hortonworks Getting Started
    • Analyzing Machine Data with Splunk
    • Pig Latin Getting Started Course
    • HDFS Getting Started Course
    • Enterprise Skills in Hortonworks Data Platform
  • Pig Eval Series
  • About
  • Big Data Big Questions

Learning Tensorflow with TFLearn

February 11, 2019 by Thomas Henson Leave a Comment

Recently we have been talking a lot about Deep Learning and Tensorflow. In the last post I walked through how to build neural networks with Tensorflow . Now I want to shift gears to talk about my newest venture into Tensorflow with TFLearn. The lines between deep learning and Hadoop are blurring and data engineers need to understand the basics of deep learning. TFLearn offers an easy way to learn Tensorflow.

What is TFLearn?

TFLearn is an abstraction framework for Tensorflow. An abstraction framework is basically a higher level language for implementing lower level programming. A simple way to think of abstraction layers is it reduces code complexity. In the past we used Pig Latin to abstract away Java code for Tensorflow we will use TFLearn.

TFLearn offers a quick way for Data Engineers or Data Scientist to start building Tensorflow neural networks without having to go deep into Tensorflow. Neural Networks with TFLearn are still written in Python, but the code is drastically reduced from Python Tensorflow. Using TFLearn provides Data Engineers new to Tensorflow an easy way start learning and building their Deep Neural Networks (DNN).

Pluralsight Author

Since 2015 I’ve been creating Data Engineering courses through Pluralsight. My latest course on TFLearn titled Implementing Multi-layer Neural Networks with TFLearn is my sixth course on Pluralsight. While I’ve developed courses in the past this course was in two major areas: Implementing Multi-layer Neural Networks is my first course in the deep learning area. Second this course is solely based on coding in Python. Until now I had never done a coding course per say.

Implementing Multi-layer Neural Networks with TFLearn

Implementing Multi-layer Neural Networks with TFLearn is broken into 7 modules. I wanted to follow closely with the TLearn documentation for how the functions and layers are broken down. Here are the 7 modules I cover in Implementing Multi-layer Neural Networks with TFLearn:

  1. TFLearn Course Overview – Breakdown of what is covered in this course around deep learning, Tensorflow, and TFLearn.
  2. Why Deep Learning – Why do Data Engineers need to learn about deep learning? Deep dive into the basic terminology in deep learning and comparison of machine learning and deep learning.
  3. What is TFLearn? – First start off by defining TFLearn and abstraction layers in deep learning. Second we breakdown the differences between Tensorflow and TFLearn. Next we run through both the TFLearn and Tensorflow documentation. Finally we close out the module by building your TFlearn development environment on you machine or in the cloud.
  4. Implementing Layers in TFLearn – In deep learning layers are where the magic happens so this where we begin our Python TFLearn coding. In the first example we build out neural networks using the TFLearn core layers. Our second neural network we build will be a Covolutional Neural Network (CNN) with out MNIST data source. After running our CNN it’s time to build our 3 neural network with a Recurrent Neural Network (RNN). Finally we close out the module by looking at the Estimators layers in TFLearn.
  5. Building Activations in TFLearn  – The activations module give us time to examine what mathematical functions are being implemented at each layer. During this module we explore the different activiations available in Tensorflow and TFLearn.
  6. Managing Data with TFLearn – Deep learning is all about data sets and how we train our neural networks with those data sets. The Managing Data with TFLearn module is all about the tools available to handle our data sets. In the last topic area of the data module we cover the implications and tools for real-time processing with Tensorflow’s TFLearn.
  7. Running Models with TFLearn – The last module in the Implementing Multi-layer Neural Networks with TFLearn Pluralsight course in all about how to run models. During the course we have focused mainly on how to implement Deep Neural Networks (DNN) but in this module we introduce Generative Neural Networks (GNN). Finally after comparing DNNs and GNNs we look to the future of deep learning.

Honest Feedback Time

I would love some honest feedback on this course:

  • How did you like?
  • Would you like to see more deep learning courses?
  • What could be better?

Feel free to put these answers in the comment section below or send me an email.

Related

Filed Under: Tensorflow Tagged With: Deep Learning, Pluralsight, Python, Tensorflow, TFlearn

Subscribe to Newsletter

Archives

  • February 2021 (2)
  • January 2021 (5)
  • May 2020 (1)
  • January 2020 (1)
  • November 2019 (1)
  • October 2019 (9)
  • July 2019 (7)
  • June 2019 (8)
  • May 2019 (4)
  • April 2019 (1)
  • February 2019 (1)
  • January 2019 (2)
  • September 2018 (1)
  • August 2018 (1)
  • July 2018 (3)
  • June 2018 (6)
  • May 2018 (5)
  • April 2018 (2)
  • March 2018 (1)
  • February 2018 (4)
  • January 2018 (6)
  • December 2017 (5)
  • November 2017 (5)
  • October 2017 (3)
  • September 2017 (6)
  • August 2017 (2)
  • July 2017 (6)
  • June 2017 (5)
  • May 2017 (6)
  • April 2017 (1)
  • March 2017 (2)
  • February 2017 (1)
  • January 2017 (1)
  • December 2016 (6)
  • November 2016 (6)
  • October 2016 (1)
  • September 2016 (1)
  • August 2016 (1)
  • July 2016 (1)
  • June 2016 (2)
  • March 2016 (1)
  • February 2016 (1)
  • January 2016 (1)
  • December 2015 (1)
  • November 2015 (1)
  • September 2015 (1)
  • August 2015 (1)
  • July 2015 (2)
  • June 2015 (1)
  • May 2015 (4)
  • April 2015 (2)
  • March 2015 (1)
  • February 2015 (5)
  • January 2015 (7)
  • December 2014 (3)
  • November 2014 (4)
  • October 2014 (1)
  • May 2014 (1)
  • March 2014 (3)
  • February 2014 (3)
  • January 2014 (1)
  • September 2013 (3)
  • October 2012 (1)
  • August 2012 (2)
  • May 2012 (1)
  • April 2012 (1)
  • February 2012 (2)
  • December 2011 (1)
  • September 2011 (2)

Tags

Agile AI Apache Pig Apache Pig Latin Apache Pig Tutorial ASP.NET AWS Big Data Big Data Big Questions Book Review Books Data Analytics Data Engineer Data Engineers Data Science Deep Learning DynamoDB Hadoop Hadoop Distributed File System Hadoop Pig HBase HDFS IoT Isilon Isilon Quick Tips Learn Hadoop Machine Learning Machine Learning Engineer Management Motivation MVC NoSQL OneFS Pig Latin Pluralsight Project Management Python Quick Tip quick tips Scrum Splunk Streaming Analytics Tensorflow Tutorial Unstructured Data

Follow me on Twitter

My Tweets

Recent Posts

  • Tips & Tricks for Studying Machine Learning Projects
  • Getting Started as Big Data Product Marketing Manager
  • What is a Chief Data Officer?
  • What is an Industrial IoT Engineer with Derek Morgan
  • Ultimate List of Tensorflow Resources for Machine Learning Engineers

Copyright © 2023 · eleven40 Pro Theme on Genesis Framework · WordPress · Log in

 

Loading Comments...